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We study the diffusion-limited coalescence model A+ A — A with nucleation and a finite reaction
rate in one dimension for the particle density decay by means of a Monte Carlo simulation and
analytic modeling. In our model, one or more particles in a lattice site act as a nucleus for the
particles that diffuse into the site without reacting. The master equation governing the time evolution
of local particle number and the rate equation for the particle density are derived. We present an
analytic approach for the early time regime (reaction-controlled limit), which is strongly dependent
on the initial particle density. In this regime, the particle density decays faster than the classical
(or second-order reaction) limit and lower than the exponential decay (or first-order reaction) limit.
For the long time regime the diffusion-controlled limit is recovered. We show that the intermediate
regime can be obtained as an interpolation between the initial decay and the diffusion limit. The
numerical integration results from the analytic approach are compared with computer simulations.

PACS number(s): 05.40.+j, 82.20.Mj, 82.20.Wt, 02.50.Ng

I. INTRODUCTION

The reaction-diffusion systems in low dimensions have
been widely investigated in recent years [1-8]. Most of
the research has focused on one-component coaléscence
coagulation A + A — A, and annihilation A + A — 0
in low dimensions. The last two systems were solved
exactly in one dimension for diffusion-limited reactions
with an infinite rate. These processes show the break-
down of the mean field approximation for reaction ki-
netics. In this case the diffusion-limited coalescence pro-
cesss occurs instantaneously. Experimentally, reactions
are never instantaneous [8]. This fact can be modeled by
introducing a probability of reaction between the parti-
cles when they attempt to occupy the same site [3,4]. If
the particles bounce off the model is known as the hard-
core model. Simulation and theoretical approach [5, 6]
have been performed for one-component coalescence pro-
cesses in one dimension, with a finite rate. The results
show three different regimes: (a) An early time regime
where the particles simply diffuse (with a small change in
the initial particle density) until they reach the classical
limit in which the particle density behavior is p ~ ¢71.
(b) ‘A long time diffusion-limited regime where the par-
ticle density behavior is p ~ t~1/2. (c) An intermediate
regime, in which the particle density decays slower than
the classical regime and faster than the diffusion-limited
regime. This last regime is merely a crossover between
the classical and the diffusion-controlled limits. For the
intermediate regime, an interpolation formula between
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the classical and diffusion-controlled limits emerges as a
natural consequence of the approximation done in [5, 6].

In this paper we study the one-dimensional coalescence
model A + A — A, with nucleation and a finite reaction
rate. In our model one or more particles in a finite space
region act as a nucleus for the particles that diffuse into
the region without reacting. In order to avoid interac-
tions among different nuclei we assume that the average
distance between adjacent regions is much larger than the
characteristic size of the nucleation region. The attrac-
tive interactions between nucleated particles are small
enough to allow them to diffuse into neighbor regions.
The energy of the nucleated particles is reduced such that
the reaction among them is negligible. We associate these
physical regions with discrete lattice sites. The mathe-
matical model assumes that one or more particles can co-
exist in the same site to avoid the extra interaction of the
volume effect. The nucleation induces a first-order decay
behavior in the early time regime at high particle den-
sities. This is the largest difference between our model
and the hard core model. At low densities we recover
the same results of hard core, i.e., a second-order-type
reaction at short time.

‘We introduce the nucleation model for the particle den-
sity decay by means of a Monte Carlo simulation and an
analytic model. The paper is organized as follows. In
Sec. IT we present our model and a Monte Carlo simu-
lation. In Sec. ITI, the master equation governing the
time evolution of local particle number is derived. Also,
the rate equation for the particle density is obtained. In
Sec. IV we develop an analytic approach for the time
evolution of particle density. The early time regime and
diffusion-controlled regime are described. The interme-
diate regime is obtained by matching the early and the
long time regimes. Finally, we conclude with a discussion

in Sec. V.
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II. NUCLEATION MODEL AND
MONTE CARLO SIMULATION

In this model the particles perform a random walk be-
tween nearest-neighbor sites in a one dimensional lattice
of lenght L with periodic boundary conditions. The par-
ticles are allowed to nucleate in the same position, i.e.,
this is not a hard-core model. At the initial time, we start
with a fixed density of particles pg. The lattice sites are
chosen at random to be occupied by one particle until the
lattice is filled with No = Lpg particles. In our model the
probability to choose a site at random is 1/L. So the ran-
dom variable J that denotes the number of particles in
one site has binomial distribution with parameter 1/L,

o= () ()

When L — +o00, Ng = +00, and No/L — po, the Pois-
son distribution is appropiate to model the random vari-
able J, so that

—po ,J
R (2.1)
7!
Notice that, the probability of any site being occupied is
P(J > 1) = 0¢g = 1—e~?°, where oy is the initial average
density of occupied sites.

In the simulation, at each Monte Carlo step, one of
the N(t) particles is randomly picked to jump to any of
the nearest-neighbor sites with the same probability 1/2.
This jump always happens because many particles can
coexist in the same site. When the selected site is empty
the particle diffuses. If the chosen site is occupied, the
selected particle reacts with probability k; if the reaction
takes place this particle is removed from de system and
the number of particles is decreased by 1 [N (t) — N (¢) —
1]. Otherwise, the selected particle stays in the chosen
site with probability (1 — k). Again, in contrast with
the hard-core model, this happens because of the lack of
repulsion between particles. When the number of Monte
Carlo steps is equal to the actual number of particles in
the system, the time is increased by one unity (¢ — t+1).
In other words, after each Monte Carlo step the time is
increased by 6t = 1/N(t). The process is repeated for
many unit time steps, typically up to ¢ = 10 in a lattice
with L = 10°.

One outcome of the model is that for all time and fi-
nite rates the distribution of the particle number is a de-
parture from Eq. (2.1). When a particle jumps onto an
occupied site, the reaction takes place with probability
k; otherwise, the particle is nucleated with probability
(1 — k). For k = 0 the particles merely diffuse, so the
Poisson distribution Eq. (2.1) holds for all time. When &
is very small but finite, one expects a little deviation from
Poisson distribution. Figure 1 shows the distribution of
the particle number P(J = j) as a function of the aver-
age particle number density p(t). When k increases this
deviation also increases. Thus the reaction rate induces
the departure. The early time regime is dominated by
the slow reaction rate (reaction-limited case) and nonde-
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FIG. 1. Probability distribution of the particles number
vs particle density. The open symbols correspond to the
Monte Carlo simulation for £ = 0.1 and the solid line to Eq.
(2.1).

parture exists. Then at an early time regime for all k£ the
average occupation number [0 = 1 — P(J = 0)] in our
model is

o(t)=1—e PV, (2.2)

For all time Eq. (2.2) holds approximately for k¥ < 1.
Notice that in the hard-core model o = p for all k.
Figure 2 displays the occupied sites density o(¢) as a
function of particle density p(¢). The symbols correspond
to the Monte Carlo simulation results and the solid line
to Eq. (2.2). The inset figure displays the mean distance
between neighbor occupied sites, ({(z) = ¢~!) as a func-
tion of particle density. The dashed lines (¢ = p) cor-
respond to the hard-core model in both figures. In our
nucleation model at very high densities (p > 1) the oc-
cupied sites density comes near to 1. That means that,
on average, any particle has a first neighbor in a large
densities interval, therefore enhancing the reaction. In
the hard-core model the mean distance between particles
is approximately 1 at short density intervals in the high
density regime (p S 1). The nucleation model and the
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FIG. 2. Occupied sites density vs particle density. The
symbols correspond to the Monte Carlo simulation results and
the solid line to Eq. (2.2). Here k = 0.01 (O) and 0.5 (A).
The inset figure displays the mean distance between neighbor
occupied sites, i.e., (x) = 0™, as a function of particle den-
sity. In this simulation po = 3. In both cases the dashed line
(o = p) corresponds to the hard-core model.
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FIG. 3. Schematic representation of the reaction mecha-

nisms in one Monte Carlo step for particles in first-neighbor
sites. In case (a) m and n are the particles numbers in the
sites (4 4+ 1) and 4 at time ¢, respectively. In case (b) 1 is one
particle in the site (i + 1) and n is the particle number in the
site 7 at time t. In both cases the reaction takes place in the
i site at time (¢ + 6t).

hard-core model at low densities have a similar regime
because o — p for all k.

In our model the reaction mechanisms are schemati-
cally illustrated in Fig. 3. In both cases p decreases. In
a Monte Carlo step the mechanisms are as follows:

’ni_l(t)

ni(t + 6t) = [ns(t) + 1] (7;{;1(%) + Bl ) (L= ksi(t)] + [ns(t) = 1] g5

n; (t)

ni_l(t)

N(@#) T 2N(t)

oo |1 ()

Notice that 1/N(t) is the probability of selecting a par-
ticle in Monte Carlo step 6t, and 1/2 is the probability
of jumping to each neighbor site. The particle number
n; increases by 1 when a particle occupying a neighbor
site is chosen and jumps to the ith without reaction. The
nonreaction probability is 1—ks;. The other possibility is
that n; decreases by 1 when the ith site selected particle
diffuses to a neighbor site. Otherwise, the particle num-
ber remains unchanged if one of the following alternatives
holds: (a) No particle is chosen from the ith site or from
one of its neighbors. (b) A particle from a neighbor site,
to the ith site, is chosen to diffuse to this site and reacts
with probability k. We remark that any chosen particle
always diffuses. Replacing N(t) = 1/6t and taking the
limit §t — 0 Eq. (3.1) becomes [n; = n;(¢), s; = s:(t)],

i 2 (ni—1 — 2n; + n44q) — 5 Si (ni—1 4+ n4y1)

(3.2)
with periodic boundary condition ny = ny. Introducing
the particle density as

1 L
=5 > i),

niea(t)  mioa(t)
) ““"(t)( aN() T 2N (D )] '
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(a) One particle of a multioccupied site diffuses to a
neighbor occupied site and reacts. In this case o remains
constant.

(b) One particle of a single occupied site diffuses to a
neighbor occupied site and reacts leaving an empty site.
In this case o decreases.

At high densities the mechanism (a) predominates. As
the particle density decreases, the mechanism (a) is at-
tenuate and the mechanism (b) is enhanced. At low den-
sities the mechanism (b) predominates. The competition
between both mechanisms can be understood by analyz-
ing Fig. 1. The time evolution of p(t) in the initial and
intermediate regime exhibits different behavior in both
models because the nucleation effects are relevant, as we
show in Sec. IV.

III. THE MASTER EQUATION

We consider here the master equation of the process
described above. At time t, let us denote by n;(t) the
particles number and by s;(t) the occupation number of
the ith generic site. When this site is occupied s; = 1,
otherwise s; = 0. The time evolution equation for the
particle number in a Monte Carlo step 6t is

nl(t)

(3.1)
and averaging Eq. (3.2) over lattice sites results in
dp
P _ _gr,, 3.3
7 (3:3)
where
_1 nj—1+ 741

In other words, if in one Monte Carlo step 6t = 1/N (t)
the reaction is successful, then dp = —1/L. Let jand j+1
be the occupied sites, with n; and n;,, particles, respec-
tively. Then the probability to select one of the n;’s to
diffuse to the (j + 1)th site and react is s;11n;/(2N).
Similarly, the probability to select one of the m;11’s to
diffuse to the jth site and react is s;n;+1/(2N). The
probability that the number of particles in the system
decreases one unit is
L
- 8j+175 + 8141
W(N—>N-1)=k Z} T A
i=
and taking into account that
dp dp

;E_E{W(N—)N—l)
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FIG. 4. Monte Carlo simulation results of I', (O), —p/k
(solid line), op (dashed line a), and mp®/(2k) (dashed line b)
as a function of p. In this simulation po = 10, £ = 0.1, and
t=10°

we can recover Eq. (3.4). The Monte Carlo simulation
results (see Fig. 4) shows that Eq. (3.4) is satisfied for all
time. Notice that in the hard-core model n; — s; and
T',, is simply the pairs density of the nearest-neighbors
occupied sites [7].

IV. TIME EVOLUTION OF PARTICLE DENSITY

At the initial time we start with a random sites distri-
bution. The site occupation number s; is independent of
the neighbors particles number (njy1,7;_1). Then Eq.
(3.4) becomes '

Tn(p) =0p, (4.1)

where

o(t) =

SIS

L
Z s;(t)

is the occupied sites density. In the early time regime,
the particles merely diffuse with a finite reaction rate
and there is a negligible change in the initial density (see
Fig. 4, dashed line a). The early time evolution equation
for p(7) near to po (7 = kt) is

dp
E = —0p,

(4.2)
with initial condition p(0) = po. Expanding o0 =1 —e™?
in Eq. (4.2) around pg up to first order the solution is

p(r) = —— 2P0
(a+p) exm — B’

where a = 1—e7P° —pg e P and B = pg e ?°. The good
agreement between the Monte Carlo simulation results
and Eq. (4.3) at the early time regime is displayed in
Fig. 5. Let us explain the meaning of @ and 8: from
Eq. (2.1) the probability to find any site with two or
more particles is P(J > 2) = a, the probability to find
any site with exactly one particle is P(J = 1) = 3, and

(4.3)
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FIG. 5. Particle density vs kt in the early time regime. We
display the Monte Carlo results (symbols) and analytic results
from Eq. (4.3) (dashed line) for different initial densities. Here
po =10 (D)y 3 (V)7 0.8 (0)7 0.1 (A)

the probability to find any site with one or more particles
isP(J>21)=a+pB=o0.

In the limit pp < 1 we obtain p(7)/po = 1/(1 + poT).
This mean field solution describes the second-order re-
actions (dp/dr = —p?) characteristic of the hard-core
coagulation models in their initial regime. The crossover
time between the early and intermediate regime is ap-
proximately ¢; = (kpo)~! [6]. The mean field approxi-
mation holds in our model because the probability to find
any empty site is P(J = 0) = 1—0O(po) and the probabil-
ity to find any site with j particles is P(J = j) = O(p}).
The low density regime is satisfied when o9 — po. In this
case the average distance between particles goes to 1/po.

In the other limit, p(7)/po — e~7 when po — +oo.
This solution satisfies the differential equation dp/dr =
—p of a first-order reaction. In our case this equation
is strictly valid for the early regime (7 < 1). So, t; =
k~! is appproximately the crossover time between the
initial regime and the intermediate regime. The height
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t

FIG. 6. Relative particle density vs time. Monte Carlo
results for k = 0.1 (), 0.01 (O), and po = 10 are shown. The
solid line shows the numerical integration results of Eq. (4.5).
The dashed line has a slope of —1.
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FIG. 7. Particle density vs time. Simulation results for
po = 10 (O), 3 (v), 0.8 (O), 0.1 (A), and k = 0.01 are
shown. Shown also are the numerical integration results of
Eq. (4.5) (solid line).

density limit is satisfied when o9 — 1. This mean that
the average distance between particles, 1/0¢ — 1. This is
why the reaction time goes faster than in the low density
regime.

In the long time regime (p — 0) the mean distance of
interoccupied sites is very large. Then, the diffusion time

is larger than the reaction time. The evolution equation
[1] is

d T

T==5r, (4.4)
which is independent of k. Figure 4 (dashed line b) shows
how I, — —7wp3/(2k) when t — +o0o. This regime is
characterized by a diffusion-limited decay (p ~ t~/2).

From Fig. 4, we see that the intermediate regime can

be explained as an interpolation between the initial decay
and the diffusion-limited decay. We describe the interme-
diate regime matching the long time asymptotic regime
[Eq. (4.4)] and early time regime [Eq. (4.2)]. The evolu-
tion equation is

3w
Qo

(4.5)

x| -

p_
A

Notice that at low initial particle density o — p for all
time and Eq. (4.5) becomes the hard-core evolution equa-
tion with k£ < 1 [6]. In Figs. 6 and 7 we plot the particle
density decay results from the numerical integration of
Eq. (4.5) and from the Monte Carlo simulations. The
agreement between both results is excellent for all time.
For high initial particle densities Fig. 6 shows an interme-
diate regime with two behaviors: first the particle den-
sity decays faster than the classical limit (p ~ ¢t~!) and
later it decays faster than the diffusion-limited regime

L. A. BRAUNSTEIN AND R. C. BUCETA 53

(p ~ t~1/2), but not quite as fast as the classical limit.
In the early and intermediate regimes the nucleation ef-
fects enhance the reaction.

V. CONCLUSIONS

We have introduced a diffusion-limited coalescence
model A + A — A with nucleation and finite reaction
rates for the particle density decay by means of the Monte
Carlo simulation and the analytic modeling. Summariz-
ing, the principal features of the model are (a) the par-
ticles can be crowded in the same site, (b) the nucleated
particles cannot react between them, and (c) the reaction
is allowed between particles of adjacent sites. One con-
sequence of the model is that the particle number in any
site has Poisson distribution in the early time regime and
holds approximately for all time when k£ < 1. The time
evolution of the particle density in the early and interme-
diate regime shows a characteristic behavior because the
nucleation effects enhance the reaction. We have derived
the master equation (3.1) for the local particle number
and the rate equation (3.3) for the particle density. The
early time regime has been characterized by an analytic
approach and compared with Monte Carlo simulation re-
sults.

Our model shows that the early time regime is strongly
dependent of the initial particle density. The particle
density decays faster than the classical limit [p ~ t™}]
and lower than the exponential limit [p ~ exp(—kt)]. At
very high particle densities the first-order reaction be-
havior in the early time regime is the consequence of the
nucleation effect. This is the largest difference between
our model at high densities and the hard-core model. At
very low densities we recover the same results of hard
core, i.e., a second-order-type reaction at short time. In
the long time regime the diffusion-limited decay is recov-
ered. We show that the intermediate regime is merely an
interpolation between the initial decay and the diffusion
limit. The results show two behaviors in the interme-
diate regime for the high initial particle density: first
the density decays faster than the classical limit, and
later it decays faster than the diffusion-limited regime,
but not quite as fast as the classical limit. The agree-
ment between the simulation and numerical integration
of Eq. (4.5) is excellent for all time.
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